
Paul Tuohy
ComCon
System i Developer
5, Oakton Court,
Ballybrack
Co. Dublin
Ireland ComCon

Phone: +353 1 282 6230
e-Mail: paul@systemideveloper.com
Web: www.systemideveloper.com
 www.ComConAdvisor.com

Extract From Embedded SQL in RPG

Beyond the Basics

ComConPaul Tuohy

Paul Tuohy, author of "Re-engineering RPG Legacy Applications" and "The
Programmer's Guide to iSeries Navigator", is one of the most prominent consultants and
trainer/educators for application modernization and development technologies on the
IBM Midrange. He currently holds positions as CEO of ComCon, a consultancy firm
based in Dublin, Ireland, and founding partner of System i Developer, the consortium of
top educators who produce the acclaimed RPG & DB2 Summit conference. Previously,
he worked as IT Manager for Kodak Ireland Ltd. and Technical Director of Precision
Software Ltd.
In addition to hosting and speaking at the RPG & DB2 Summit, Paul is an award-winning
speaker at COMMON, COMMON Europe Congress and other conferences throughout
the world. His articles frequently appear in System i NEWS, iSeries Experts Journal, The
Four Hundred Guru, RPG Developer and other leading publications.

This presentation may contain small code examples that are furnished as simple
examples to provide an illustration. These examples have not been thoroughly tested
under all conditions. We therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs.
All code examples contained herein are provided to you "as is". THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE EXPRESSLY DISCLAIMED.

ComCon

 H option(*srcStmt : *noDebugIO))
 d data Ds qualified
 d deptNo 3a
 d deptName 36a varying
 /include STANDARD
 /free
 exec SQL
 declare C1 cursor for
 select deptNo, deptName from department order by deptNo
 for read only;

 exec SQL
 open C1;

 exec SQL
 fetch next from C1 into :data ;

 doW (SQLCODE >= 0 and SQLCODE <> 100);
 dsply ('Fetch Loop ' + data.deptNo + ' ' + data.deptName);

 exec SQL
 fetch next from C1 into :data ;
 endDo;

 exec SQL
 close C1;
 *inLR = *on;

Reminder – Using a Cursor

Sequential read of a file – Fetch row at a time

ComCon

 H option(*srcStmt : *noDebugIO)
 d MAX_ROWS C 10
 d i s 10i 0
 d getRows s 10i 0 inz(MAX_ROWS)

 d data Ds dim(MAX_ROWS) qualified
 d deptNo 3a
 d deptName 36a varying
 /include STANDARD

 /free
 exec SQL declare C1 scroll cursor for
 select deptNo, deptName from department order by deptNo
 for read only;

 exec SQL
 open C1;

 exec SQL
 fetch first from C1 for :getRows rows into :data ;

 for i = 1 to SQLERRD(3);
 dsply ('Normal ' + data(i).deptNo + ' ' + data(i).deptName);
 endFor;

 exec SQL
 close C1;

Multi Row Fetch

A Multi Row Fetch is a much more efficient way of retrieving rows

ComConMulti Row Fetch Considerations

Much faster than a FETCH Loop
That alone is reason enough to use it

An easy way of generating a result set
When using embedded SQL for stored procedures

DS Array can be passed as a parameter
Provides an easy means of using result sets in RPG applications

Data Structure Array or Multiple Occurrence Data Structure (MODS)
MODS is the older (and more cumbersome) technique
DS Arrays are much easier

Only a finite number of rows may be retrieved
Pre-V6R1 – 64K of data
Post V6R1 – 16M of data

What if the result set exceeds the size of the DS array?
Does “subfile paging” ring a bell?

ComConFetch Options

Alternatives to Next processing
Fetch keyword

Keyword Positions Cursor
next On the next row after the current row
prior On the row before the current row
first On the first row
last On the last row
before Before the first row - must not use INTO
after After the last row - must not use INTO
current On the current row (no change in position)
relative n n < -1 Positions to nth row before current

n = -1 Same as Prior keyword
n = 0 Same as Current keyword
n = 1 Same as Next keyword
n > 1 Positions to nth row after current

ComCon

 H option(*srcStmt : *noDebugIO)
 d MAX_ROWS C 3
 d i s 10i 0
 d getRows s 10i 0 inz(MAX_ROWS)

 d data Ds dim(MAX_ROWS) qualified
 d deptNo 3a
 d deptName 36a varying
 /include STANDARD

 /free
 exec SQL declare C1 scroll cursor for
 select deptNo, deptName from department order by deptNo
 for read only;

 exec SQL open C1;

 doU SQLCODE <> 0;
 exec SQL
 fetch relative 1 from C1 for :getRows rows into :data ;

 for i = 1 to SQLERRD(3);
 dsply ('Sequential ' + data(i).deptNo + ' ' + data(i).deptName);
 endFor;
 endDo;

 exec SQL close C1;
 *inLR = *on;

Sequential Multi Row Fetch

Sequential read of a “page” at a time

Naughty!!!

ComConFETCH RELATIVE

FETCH RELATIVE is relative to the current cursor position in the result set
0 is the current position of the cursor
1 is the next row
- i.e. Fetch relative 1 is the same as Fetch Next
-1 is the previous row
- i.e. Fetch relative -1 is the same as Fetch Prior

As rows are fetched, cursor is placed on last row read

ComCon

 H option(*srcStmt : *noDebugIO)
 d MAX_ROWS C 11
 d pageSIze s 10i 0 inz(MAX_ROWS)

 /include STANDARD
 /free
 dsply 'Number of rows per page: ' ' ' pageSize;
 if (pageSize > (MAX_ROWS-1));
 pageSize = (MAX_ROWS-1);
 endIf;
 declareAndOpen();
 getRows(pageSize);
 closeCursor();
 *inLR = *on;
 /end-Free

Paging Multi Row Fetch – A Sample Program

To page forward/back through a result set
Using a multi row fetch
A simple example
- declareAndOpen() contains the same Declare Cursor and Open Cursor as previous
- closeCursor() contains the same Close Cursor as previous example
- Complete listing in notes

ComConPaging Considerations

Paging considerations:-
SQLCODE not set if rows read < page size
- Use GET DIAGNOSTICS to determine if EOF reached
- Or use SQLERRD(5)
EOF not set if last row of page is last row of result set
- i.e. EOF not set if 10 rows in result set, 10 rows in page
Read one more row than page size
- To detect EOF

Factors
The size of a page
The number of rows just read
EOF

Controlling the relative position
For first page, set relative position to 1
If Page Back requested, set relative position to (1 - (rows on this page + page size))
- i.e. Next Page starts with the first row of the previous page
Read page size + 1
If not EOF – set relative position to 0
- i.e. Next Page starts with the last row read
If EOF – set relative position to (1 – rows just read)
- i.e. Next Page starts with the first row of this page

ComCon

 p getRows...
 p b
 d PI
 d pageSize 10i 0 const

 d data Ds dim(MAX_ROWS)
 d qualified
 d deptNo 3a
 d deptName 36a varying

 d i s 10i 0
 d direction s 1a inz('F')
 d getPageSize s 10i 0
 d relativeRow s 10i 0 inz(1)
 d backRows s 10i 0
 d lastRow s 10i 0

Paging Multi Row Fetch – getRows() (1 of 3)

These are the D Specs for the getRows() subprocedure
direction - F = Forward, B = Back, E = End
getPageSize - set to pageSize + 1
relativeRow Initialized to 1 for the first page read

the requested Page Size

DS array for the fetch

paging direction
rows to retrieve on the fetch
relative offset for next read
number of rows fetched
status for EOF

ComCon

 /free
 doU (direction = 'E');
 getPageSize = pageSize + 1;
 if (direction = 'B');
 relativeRow = (1 - (pageSize + backRows));
 endIf;
 exec SQL fetch relative :relativeRow from C1
 for :getPageSize rows into :data;
 backRows = SQLERRD(3);
 exec SQL get diagnostics
 :lastRow = DB2_LAST_ROW;
 relativeRow = 0;
 if (lastRow = 100);
 dsply ('Reached EOF');
 relativeRow = (1 - backRows);
 endIf;

Paging Multi Row Fetch – getRows() (2 of 3)

The basic logic is (continued on next slide)
Set the no. of rows to retrieve on the fetch
If page back requested – set relative offset to start of previous page
Fetch the page
Store the no of rows retrieved
Check for EOF
Assume next relative offset is from last row just read
If EOF - set relative offset to start of this page

no. of rows to retrieve
Page back?
offset to start of previous page

Fetch page

Store rows retrieved
Check for EOF

Assume next relative offset
EOF?

offset to start of this page

ComCon

 if (backRows = 0);
 exec SQL fetch first from C1 for :getPageSize rows into :data;
 backRows = SQLERRD(3);
 endIf;

 for i = 1 to backRows;
 dsply ('Paging ' + data(i).deptNo + ' ' + data(i).deptName);
 endFor;
 dsply 'Direction (F/B/E) ' ' ' direction ;
 endDo;
 /end-Free
 p e

Paging Multi Row Fetch – getRows() (3 of 3)

The basic logic is (continued from previous slide)
If no rows retrieved, load first page
- Usually caused by paging beyond start of result set
Display page
- This example display all rows retrieved
- Usually display backRows or pageSize

• Whichever is less
Prompt for next paging option

 H option(*srcStmt : *noDebugIO)

 d MAX_ROWS C 11

 d pageSIze s 10i 0 inz(MAX_ROWS)

 /include STANDARD

 /free

 dsply 'Number of rows per page: ' ' ' pageSize;

 if (pageSize > (MAX_ROWS-1));

 pageSize = (MAX_ROWS-1);

 endIf;

 declareAndOpen();

 getRows(pageSize);

 closeCursor();

 *inLR = *on;

 /end-Free

 p declareAndOpen...

 p b

 d PI

 /free

 exec SQL declare C1 scroll cursor for

 select deptNo, deptName from department order by deptNo

 for read only;

 exec SQL open C1;

 /end-Free

 p e

 p getRows...

 p b

 d PI

 d pageSIze 10i 0 const

 d data Ds dim(MAX_ROWS) qualified

 d deptNo 3a

 d deptName 36a varying

 d i s 10i 0

 d direction s 1a inz('F')

 d getPageSize s 10i 0

 d relativeRow s 10i 0 inz(1)

 d backRows s 10i 0

 d lastRow s 10i 0

 /free

 doU (direction = 'E');

 getPageSize = pageSize + 1;

 if (direction = 'B');

 relativeRow = (1 - (pageSize + backRows)) ;

 endIf;

 exec SQL fetch relative :relativeRow from C1

 for :getPageSize rows into :data;

 backRows = SQLERRD(3);

 exec SQL get diagnostics :lastRow = DB2_LAST_ROW;

 relativeRow = 0;

 if (lastRow = 100);

 dsply ('Reached EOF');

 relativeRow = (1 - backRows);

 endIf;

 if (backRows = 0);

 exec SQL fetch first from C1 for :getPageSize rows into :data;

 backRows = SQLERRD(3);

 endIf;

 for i = 1 to backRows;

 dsply ('Paging ' + data(i).deptNo + ' ' + data(i).deptName);

 endFor;

 dsply 'Direction (F/B/E) ' ' ' direction ;

 endDo;

 /end-Free

 p e

 p closeCursor...

 p b

 d PI

 /free

 exec SQL close C1;

 /end-Free

 p e

ComCon

 d MAX_ROWS C 100
 d numOrderDetails...
 d s 10i 0

 d orderHeader e ds extName(ORDHEAD) qualified

 d orderDetail e ds extName(ORDDETL) qualified
 d dim(MAX_ROWS)
 /free
 exec SQL set option naming = *SYS, datFmt = *ISO, datSep = '-';
 exec SQL insert into ORDHEAD values(:orderHeader);
 if (SQLCODE = 0);
 exec SQL insert into ORDDETL :numOrderDetails rows
 values (:orderDetail);
 endIf;
 if (SQLCODE = 0);
 exec SQL commit;
 else;
 exec SQL rollBack;
 endIf;

Insert multiple rows using a DS Array
Specify the number of rows on the INSERT statement
Should really be using commitment control

A Multi Row Insert

ComConBy the Speaker

“Re-Engineering RPG Legacy Applications”
ISBN 1-58347-006-9

“The Programmers Guide to iSeries Navigator”
ISBN 1-58347-047-6
www.mcpressonline.com
www.midrange.com
www.amazon.com
etc.

iSeries Navigator for Programmers
A self teach course
www.lab400.com

Article links at
www.comconadvisor.com

