
Modularizing Large Legacy RPG Programs

Breaking A Monolith

Your Presenter

Brian May
Profound Logic, Principal Technology Evangelist

COMMON Board Member

CEF Board Member

Brian is the former product owner for Profound AI and Profound
API, as well as an author, industry expert, and award-winning
speaker.

The Problem
Discuss Technical Debt

and the Issues That
Come With It

Clean Up Phase
Preparing Your Program

For Modularization

Introducing
Scope

Breaking the
Application into

Subprocedures and
Dealing With Global

Definitions

Reusing
Functions
Externalizing

Subprocedures to be
Reused

Lessons
Learned

Examine Results and
Process to Improve

Future Projects

1 2 3 4 5

The Agenda

The Problem

Older Code
• Most monoliths are very old code using

outdated techniques and language features

Risk of Bug Introduction
• Large monoliths with only globally scoped

files and variables are very risky to maintain

• Keeping track of the flow of the logic is difficult

No Code Reuse
• The same logic or business rule is often

repeated in multiple programs

• Even multiple times in the same program

Technical Debt

Complexity
• The size and nature of monolithic programs

make them extremely difficult to fully
understand

Ownership
• Developers try to avoid changes to these

programs. This leads to a lack of ownership
or leadership to push for modularization
and innovation

Lack of Understanding

Clean Up

Where do I start?

It’s time to move forward
The first step to take is to move the program
into the latest version of RPG. It’s not time for
free form (yet), but to begin using ILE and
modern features of the language, you can’t be
running RPG III.

Move to RPGLE

Replace with mainline logic
The next step in preparing and application to
be modernized and modularized is to remove
dependence on the RPG logic cycle.

Input primary file processing as well as just
default looping are outdated techniques and
will not be available in modern applications
using linear main procedures.

The Logic Cycle

GOTO
Eliminate all GOTOs in the program

In order to properly modernize and modularize a
program, GOTO and TAG statements must be

eliminated

Structured Programming

CABxx
CABxx is just another GOTO

Get rid of compare and branch just like GOTO

Internally Described Files
• All files accessed need to be externally described

• You will have subprocedures accessing those files and
external definitions will be required

• No I specs or O specs should remain in your application

Input & Output

Free format calculations are a must. I recommend going
fully free format. It will make your code easier to read and
maintain for you and future developers.

No multi-step calculations
When moving to free format, old opcodes like ADD, Z-ADD,
SUB, MULT, and DIV will need to be changed to EVAL.

You should also look at opportunities to consolidate lines
into a clear calculation with all elements in one EVAL.

Free Format

Use Built-In Functions
• %EOF()

• %FOUND()

• %EQUAL()

Indicator DS

• Use INDDS for display and printer files

• Meaningful names

• Unique set of 99 indicators for each file

No Numeric Indicators

Introducing Scope

Change Subroutines to Subprocedures
• This is a quick first step

• This change doesn’t add any particular risk or value in
and of itself

• It is necessary to give each function its own local
scope

Time to Begin Modularizing

Create Parameter Interface
• Define a parameter interface that passes only

necessary data

• Protect parameters with CONST and VALUE as
appropriate

Eliminate Access to Global Variables
• Any variables used in the subprocedure should be

defined locally or on the parameter interface

What About Files?
• Move to SQL

• Define local if only used here

• Files can be passed as parameters (LIKEFILE)

Make
Subprocedures
Independent

This is the perfect time to begin
planning your test cases for each
subprocedure

Plan tests that…
• Test expected input

• Test unexpected inputs

• Test repeated calls

Pro Tip

Move to Linear Main
• Place main line logic into a new subprocedure

• Specify that subprocedure on the MAIN keyword

Remove Globally Scoped Definitions
• Move remaining globally scoped variables into

main subprocedure

• If you are passing files as parameters, move your
file specs into main subprocedure

TEST
• Fully test your program making sure every

subprocedure is called

• Code coverage tools are great here

Removing
Global
Scope

Add Clarity
• Change variable names, procedure names,

etc to be descriptive
• Add comments as needed

Make Subprocedures Bite-sized
• Rule of thumb is actual logic should fit on

one screen
• Particularly complex sections should be

isolated
• Anything that is duplicated or may be

reused should be its own subprocedure

One Function per Subprocedure
• Each subprocedure should have one task
• New screen, new subprocedure (and

maybe program)

Break it Down More

Reusing Functions

Decide What Subprocedures to
Externalize
• Make a list of subprocedures
• Decide for each one if it’s function will be

useful outside of the original program

Organize Subprocedures
• Move subprocedures into service programs
• Put service programs in binding directory
• Use binding directory when compiling

original program
• I prefer business object organization

Breaking it Up
Create Tests
• Write a program to implement test cases

from previous phase

• Run test cases after changes going forward

Original Programs
• Look for other programs where the same

logic may be duplicated

• Remove duplicated code and replace with
subprocedure call

New Use Cases
• APIs

• Stored procedures

• New applications

Use Your New Subprocedures

Lessons Learned

It is Critical to Learn from Each
Project
• What worked well/not so well?

• What skills did you learn?

• Can you streamline any phases?

• What new opportunities/projects did this
enable?

Take Time to Reflect

Questions?

THANK YOU!

	Slide 1
	Slide 2: Your Presenter
	Slide 3: The Agenda
	Slide 4: The Problem
	Slide 5: Technical Debt
	Slide 6: Lack of Understanding
	Slide 7: Clean Up
	Slide 8: Where do I start?
	Slide 9: Move to RPGLE
	Slide 10: The Logic Cycle
	Slide 11: Structured Programming
	Slide 12: Input & Output
	Slide 13: Free Format
	Slide 14: No Numeric Indicators
	Slide 15: Introducing Scope
	Slide 16: Time to Begin Modularizing
	Slide 17: Make Subprocedures Independent
	Slide 18: Pro Tip
	Slide 19: Removing Global Scope
	Slide 20: Break it Down More
	Slide 21: Reusing Functions
	Slide 22: Breaking it Up
	Slide 23: Use Your New Subprocedures
	Slide 24: Lessons Learned
	Slide 25: Take Time to Reflect
	Slide 26: Questions?
	Slide 27: THANK YOU!

