Breaking A Monolith

Modularizing Large Legacy RPG Programs

Ve

Your Presenter

Brian May

Profound Logic, Principal Technology Evangelist
COMMON Board Member

CEF Board Member

Brian is the former product owner for Profound Al and Profound
API, as well as an author, industry expert, and award-winning

speaker.

1

@l

The Agenda

@l

The Problem

Technical Debt

Risk of Bug Introduction Older Code
« Large monoliths with only globally scoped * Most monoliths are very old code using
files and variables are very risky to maintain outdated techniques and language features

. Keeping track of the flow of the logic is difficult

No Code Reuse

* The same logic or business rule is often
repeated in multiple programs

* Even multiple times in the same program

Ve

Lack of Understanding

Complexity

* The size and nature of monolithic programs
make them extremely difficult to fully
understand

Ownership

* Developers try to avoid changes to these
programs. This leads to a lack of ownership
or leadership to push for modularization
and innovation

@l

Clean Up

Where do | start?

@l

Move to RPGLE

- ba3? 5, 008, 30 DRCIE- solri

otis i o Lacatsmminils {

It’s time to move forward

re

" ll:m:me(‘“‘M '“.M“-" “) rAAESSIge
N : Lacatisnstrisy = locatioaString. trim()

The first step to take is to move the program
into the latest version of RPG. It’s not time for
free form (yet), but to begin using ILE and
modern features of the language, you can’t be
running RPG lll.

L 1 (locutisnstring.contatnsi” ")) (s ;
Jﬂ et mstring = lecationdtring. replecaAtll woms = .7,)
3

t (lecationstriog. costaims”. “)) {
locatiaditriog = locatienstring. replacedll(rrom . macement)
}

Stringl] location = locationString. split{ e L}

Precond it dans, checkArgument (- lecation, leagth se 7, wwruriée
dntle lat « Damle. porsaDootle{ Locat ion[0])

doctle lan = Double. pursedovdlef locationll]);

eturs now Peintilat, lon);

Qi

The Logic Cycle

Replace with mainline logic

The next step in preparing and application to
be modernized and modularized is to remove
dependence on the RPG logic cycle.

Input primary file processing as well as just
default looping are outdated techniques and
will not be available in modern applications
using linear main procedures.

@l

Structured Programming

GOTO CABXxx

Eliminate all GOTOs in the program CABxx is just another GOTO
In order to properly modernize and modularize a Get rid of compare and branch just like GOTO
program, GOTO and TAG statements must be
eliminated

Ve

Input & Output

Internally Described Files
» Allfiles accessed need to be externally described

* You will have subprocedures accessing those files and
external definitions will be required

* NolspecsorO specs should remain in your application

@l

Free Format

Free format calculations are a must. | recommend going
fully free format. It will make your code easier to read and
maintain for you and future developers.

No multi-step calculations

When moving to free format, old opcodes like ADD, Z-ADD,
SUB, MULT, and DIV will need to be changed to EVAL.

You should also look at opportunities to consolidate lines
into a clear calculation with all elements in one EVAL.

@l

No Numeric Indicators

Use Built-In Functions
« %EOF()

« %FOUND()

« %EQUAL()

Indicator DS
« Use INDDS for display and printer files
* Meaningfulnames

* Unique set of 99 indicators for each file

Ve

Introducing Scope

Time to Begin Modularizing

Change Subroutines to Subprocedures
* Thisis a quickfirst step

* This change doesn’t add any particular risk or value in
and of itself

* ltis necessaryto give each function its own local
scope

@l

Make

Subprocedures
Independent

®

Profound
Logic

Create Parameter Interface

* Define a parameter interface that passes only
necessary data

* Protect parameters with CONST and VALUE as
appropriate

Eliminate Access to Global Variables

* Anyvariables used in the subprocedure should be
defined locally or on the parameter interface

What About Files?
* Moveto SQL
 Define localif only used here

* Files can be passed as parameters (LIKEFILE)

Pro Tip

This is the perfect time to begin
planning your test cases for each
subprocedure

Plan tests that...
* Testexpected input
* Testunexpected inputs

» Testrepeated calls

@l

Removing
M Li YEY
Global ove to Linear Main

* Place main line logic into a new subprocedure
SCO pe * Specify that subprocedure on the MAIN keyword

Remove Globally Scoped Definitions

* Move remaining globally scoped variables into
main subprocedure

* Ifyou are passing files as parameters, move your
file specs into main subprocedure

TEST

* Fully test your program making sure every
subprocedure is called

* Code coverage tools are great here

Ve

Break it Down More

Make Subprocedures Bite-sized Add Clarity

* Rule of thumb is actual logic should fit on * Change variable names, procedure names,
one screen etc to be descriptive

 Particularly complex sections should be * Add comments as needed
isolated

* Anythingthatis duplicated or may be
reused should be its own subprocedure

One Function per Subprocedure
* Each subprocedure should have one task

* New screen, new subprocedure (and
maybe program)

Ve

Reusing Functions

Breaking it Up

Decide What Subprocedures to Create Tests

Externalize . .
* Write a program to implement test cases
* Make a list of subprocedures from previous phase

* Decide foreach one if it’s function will be Run test cases after changes going forward
useful outside of the original program

Organize Subprocedures
* Move subprocedures into service programs
* Put service programs in binding directory

* Use binding directory when compiling
original program

* | prefer business object organization

Ve

Use Your New Subprocedures

Original Programs

* Look for other programs where the same
logic may be duplicated

* Remove duplicated code and replace with
subprocedure call

New Use Cases
 APIs
e Stored procedures

* New applications

@l

L essons Learned

Take Time to Reflect

It is Critical to Learn from Each
Project

* What worked well/not so well?
* What skills did you learn?
 Canyou streamline any phases?

* What new opportunities/projects did this
enable?

Ve

Questions?

THANK YOU!

	Slide 1
	Slide 2: Your Presenter
	Slide 3: The Agenda
	Slide 4: The Problem
	Slide 5: Technical Debt
	Slide 6: Lack of Understanding
	Slide 7: Clean Up
	Slide 8: Where do I start?
	Slide 9: Move to RPGLE
	Slide 10: The Logic Cycle
	Slide 11: Structured Programming
	Slide 12: Input & Output
	Slide 13: Free Format
	Slide 14: No Numeric Indicators
	Slide 15: Introducing Scope
	Slide 16: Time to Begin Modularizing
	Slide 17: Make Subprocedures Independent
	Slide 18: Pro Tip
	Slide 19: Removing Global Scope
	Slide 20: Break it Down More
	Slide 21: Reusing Functions
	Slide 22: Breaking it Up
	Slide 23: Use Your New Subprocedures
	Slide 24: Lessons Learned
	Slide 25: Take Time to Reflect
	Slide 26: Questions?
	Slide 27: THANK YOU!

