
Coding RPG for the 21ST Century

RPG, MVC Architecture

and Modernization

Jim Buck

Phone 262-705-2832

jbuck@impowertechnologies.com

Twitter - @jbuck_imPower

www.impowertechnologies.com

How can imPower Technologies help your company?

IBM i Education

Online IBM i Classes: Unique offering

IBM i Concepts

Programming in ILE RPG

RDi / Modular Programming – Updated Workshop

SQL Queries Workshop – Birgitta Hauser New Workshop

Onsite IBM i Classes: Now Available

Two-day hands-on lecture and exercises

Optional Third day - Let’s design and code a new application

Modernization: Getting started

Helping a company getting started down the modernization road

The thought process of modern development

Learn to use these new tools and concepts

©2024 imPower Technologies

Session
Objectives

Relationship of OPM, EPM & ILE to IBM i OS

Converting RPG III to RPG IV (ILE RPG)

Additional Steps in the Modernization Process

ILE vs OPM – 80’s Thinking

ILE vs OPM – A New way of thinking

The Next Generation of RPG programs

MVC Architecture!

A Modern IBM i Application Overview

Activation Groups

Introduction to Binding Directories

Introduction to Binder Source

Create the Application

Relationship of OPM, EPM & ILE to IBM i OS

Original Program Model (OPM)

Introduced in OS/400 Version 1

• OPM compiler produced the program object and
additional code to handle any special processing
required. Example handling input parameters

• Special processing defined the Entry Point for
the program.

• All Calls to a program were Dynamic (overhead)

• Dynamic calls can require significant resources.
This led to large programs which reduced these
calls

• Functions often provided by the compiler are
included in the OS. This allows one language to
call programs written in another

• As of version 6.1 BASIC compiler isn’t available

Enhanced Program Model (EPM)

Introduced in OS/400 Version 1, release 2

• An enhancement to OPM which allowed
the definition of procedure calls.

• Interim solution that allowed calls to
languages like C, FORTRAN and Pascal
and return data from these procedures

• The system no longer provides EPM
compilers

Integrated Language Environment

Introduced in OS/400 Version 2, release 3 (1994)

• Provided the same type procedure integration that
EPM did but more robust and better performance

• The ILE compiler doesn’t create an executable
program object but a module object (CRTRPGMOD)

• The Executable is created in a separate step using the
CRTPGM command.

• CRTBNDPGM combines the CRTRPGMOD and
CRTPGM commands

• These program modules; written in COBOL, RPG, C,
C++ and CL can be assembled into an executable
program object

Converting RPG III to RPG IV (ILE RPG)

Convert RPG Source (CVTRPGSRC) command

• Can convert single member, source file or
member with a common source name

• Converts line-by-line and updates a log file
of the results

• Assumes that your code will compile

• Will mark RPG III code that isn’t supported
and this is usually a small amount

Converting RPG III to RPG IV (ILE RPG)

What the conversion tool won’t do!

• Will not convert source back to RPG III or
RPG/400

• Doesn’t support conversion at compile time

• Doesn’t support converting RPG II code, there
is a utility for converting RPG II to RPG III

• The conversion utility DOES NOT re-engineer
the source code, except where needed to
convert to RPGILE

• Doesn’t create files; the Log and output file
must already exist

Additional Utilities and Tools

John Caine

Additional Steps in the Modernization Process

Additional Modernization steps:

• Convert to Free format RPG

• Replace Subroutines with Procedures

• Consolidate date conversions

• Create service programs for code used by
multiple processes

• Develop new input and display applications

• Create service programs to be used as Web
Services

Checkout third party software solutions to
help with this process!

©2024 imPower Technologies

ILE vs OPM

Integrated Language Environment (ILE)

Main Benefit of ILE – Many small fast procedures

ILE procedure calls optimized to be VERY FAST!

Easier to maintain, when using smaller code components

More Exception handling options

Easier Access to APIs, including the entire C runtime library

Results in better performance!

©2024 imPower Technologies

ILE vs OPM – 80’s Thinking

In the old days large programs used to do complicated applications

Inefficient

• Programs hard to understand

• Difficult to test, all or nothing

• Programs difficult to maintain!

• Small changes can cause much effort (and heartache) to implement

• Sometimes won’t support current technologies

Benefits?

• All your code in one place

• Torment young developers

• What else ????

©2024 imPower Technologies

ILE vs OPM – A New way of thinking

Today’s Applications – Should be comprised of small procedures

• Program flow is easier to see

• Small procedure is easier to understand

• Easier to test a procedure at a time

• Easier to share across multi-applications

• Easier to divide up the application among your developers

• Good procedure names can make the code self-documenting

• Easily step over procedures when debugging

• Easier to define and debug where problems are occurring

More Control

• Activation Groups

• Exception handling

©2024 imPower Technologies

What NOT to consider!

Is there an optimum????

• Size of a procedure

• Number of procedures per module

• Depth of code nesting level

• Number of Binding directories

• Service programs per binding directory

• Modules per Service Program

Traditional Monolith Program

RDi

Visual Application

Diagram

©2024 imPower Technologies

The Next Generation of RPG programs

The future of RPG

• RPG isn’t going anywhere

• Need to expend resources to update older
code. The tools are available!

• Develop new code that will be usable
regardless of the changes made to the
VIEW

• Write RPG programs that can be used for
Web Services

©2024 imPower Technologies

MVC Architecture!

Break up your code into three components

• Introduced in 1979 by Trygve Mikkjel Heyerdahl Reenskaug

• His idea was to break-up complicated applications into
smaller more manageable parts

• 80’s and early 90’s popular with desktop application

• Today it is widely used in Web Application Frameworks

• Some frameworks, ASP.NET, Angular, Ruby on Rails

©2024 imPower Technologies

MVC Architecture!

Break up your code into three components

• Model – responsible for the data-logic behind the
application

• View - How the user sees and interacts with the application

• Controller - Makes decisions for the application based on
the actions sent from the View and data from the Model.
The “Decision maker” of the application

©2024 imPower Technologies

A Modern IBM i Application Overview

PROG175SQL.sqlrpgle

Program drives the 5250 screens assorted Subfiles and handles the
interactions needed to maintain part orders for the company

PROG175D Screen

DDS needed to Display, Delete and maintain orders

CUSTSRVPGM.sqlrpgle

Handles all of the Customer table database work

CINVSRVPGM.sqlrpgle

Handles all of the Inventory table database work

ORDSSRVPGM.sqlrpgle

Handles all of the Order Header/Detail table database work

GETSQLDIAG.sqlrpgle

Service program called to check results of any SQL
Statement

©2024 imPower Technologies

The View

Allow the user to:

1.Enter Customer number
2.Lists and change orders for the selected

customer

Add / change shipping orders

©2024 imPower Technologies

The Controller Program

PROG175SQL – The Controller

Contains Controller Subprocedures

Displays the correct screen based on user interactions

Based on user interactions contains logic to do calculations
needed by the application

Calls correct service program and subprocedure to handle
database updates (The Model)

Evaluates the results of database requests and sends
these results to the user of the application (The View)

©2024 imPower Technologies

The Model Programs

CINVSRVPGM – A model Program

Contains the Data base Subprocedures

Updates the Inventory Database Tables

Checks the results of the database access

Calls GETSQLDIAG to check results of any SQL Statements

Returns the database results and status to the Controller

©2024 imPower Technologies

The Model Programs

CUSTSRVPGM – A model Program

Contains the Data base Subprocedures

Updates the Customer Database Tables

Checks the results of the database access

Calls GETSQLDIAG to check results of any SQL Statements

Returns the database results and status to the Controller

©2024 imPower Technologies

The Model Programs

ORDSSRVPGM – A Model Program

Contains the Database Subprocedures

Updates the Order Header/Detail Database Tables

Checks the results of the database access

Calls GETSQLDIAG to check results of any SQL Statements

Returns the database results and status to the Controller

©2024 imPower Technologies

The GETSQLDIAG program

GETSQLDIAG – Ancillary Program

Accepts Data Structures from the calling
program

Runs the GET DIAGNOSTICS Command to find
results of last SQL statement

Handles the logic to set an indicator describing
the results of the SQL statement

Returns a data structure containing the results
of the Get Diagnostics command

©2024 imPower Technologies

Activation Groups

• Nothing more than an isolated area with its own resources
• Contains shared-open, overrides and commitment control to

a portion of your job
• Applications can’t interfere with each other
• When an activation group ends all the files used by the group

are closed

Activation Groups

©2024 imPower Technologies

Activation Groups

• OPM Programs – run in their own environment. If a program
is run multiple times the environment needs to be recreated

• ILE Programs – still need an environment to run in but they
can share these environments and even keep them open
between programs. Used properly results in better
management

• What’s the goal of using ILE Activation groups?
• Minimize the number of resources consumed creating

environments and reduce the overhead of multiple
environments

• Run related programs in the same activation group

Basic Facts

©2024 imPower Technologies

Activation Groups

• Using the CRTRPGPGM command the DFTACTGRP parameter
is available
• Two options

• *YES, the ILE program will act like a OPM program, Why
bother?

• *NO, the ILE program will need a named Activation group
• When set to *NO, the ACTGRP parameter appears

Types of Groups

©2024 imPower Technologies

Activation Groups

• *NEW – Causes a NEW activation group to be created when
the program is run
• System will create and name the group every time the

program is run.
• This will create system overhead
• The system will act like an OPM system

ACTGRP Parameter - *NEW

©2024 imPower Technologies

Activation Groups

• “NAME” – If Specified on every compile, WORKS LIKE *NEW
• The system will work as an OPM system
• Except when the program ends the Activation group

continues to run and can only be cleaned up is to run the
RCLACTGRP.

ACTGRP Parameter – “NAME”

©2024 imPower Technologies

Activation Groups

• *CALLER – causes the program to run in the same activation
group as the program that called it.

• Should only be used when you want a program to run in a
known activation group

• Most often used with service programs.

ACTGRP Parameter – *CALLER

©2024 imPower Technologies

Activation Groups

• Files opened by the activation group close
• Activation-scoped file overrides are freed up
• Static storage used by the programs and service

programs gets released
• Allocated storage (%ALLOC) gets released
• Activation-scoped Commitment Control will end and if commitment

control is being used database changes will be committed

When the Activation group closes

©2024 imPower Technologies

Error Handling

OPM Program or program created with DFTACTGRP(*YES)

• Handle Exceptions using error indicator, (e), *PSSR,
INFSR or an Inquiry message

When using ILE there are additional options

• Percolate the exception to the caller (up the stack)

• Register a procedure to run if the procedure crashes
(CEEUTX)

• Register a procedure to run when there is an
exception (CEEHDLR)

Introduction to Binding Directories

Some Characteristics of Binding Directories

• Convenient method of grouping the names of modules and service
programs that may be needed to create an ILE program or service
program

• The object names listed do not have to exist at the time the binding
directory is created and populated

• *LIBL or a specific library name are the only valid entries

• The object names listed are optional:

• The named objects are used only if unresolved imports exist and if
named object provides a needed export for an unresolved import
request

Binding Directories

Used to list the names of modules and
service programs that may be used in
an application

They are optional and are used as a
convenience and to reduce program
size

Important to list only modules and
service programs that are potentially
used

Binding Directories

Create a Binding Directory

1.Create a new Command
2.Type the command name
3.Fill in the blank
Then Ok

Binding Directories

Populate Binding Directory

Expand to: set to Binding Directory
1.Right-Click and select iSphere Editor

2.Right-click and select New

Using Binding Directory

Specifying the Binding Directory

• Use the BNDDIR keyword on the Ctl-
Opt spec of your RPG modules

• Use the BNDDIR keyword on the
CRTPGM or CRTBNDRPG
command

• Use the BNDSRVPGM keyword on the
CRTPGM (or CRTSRVPGM) command

Intro to Binder source
Binder source is used when creating a service program. A signature is created
from the order the modules are listed and it shows the order modules are
exported

• The file must contain:

• Start Program Export (STRPGMEXP) command identifies the beginning of
the list of exports from the service program.

• Export Symbol (EXPORT) commands identify each symbol name
(Procedure) available to be exported from the service program.

• End Program Export (ENDPGMEXP) command identifies the end of the
list of exports from the service program.

Important

Do not to change the order of exports in the binder source!

Retrieve Binder source

Retrieve the Binder source

Right-click the program object

1.The program current signature

2.The list of current sub-procedures

Original Service Program

Changed Service Program

New Binder Source shows the new procedure

Updated Service Program

Using the combined Binder Source

Updated Service Program

Updated Service program with multiple signatures

©2024 imPower Technologies

Create the Application
Step 01

• Create the 5250 Display file PROG175D

Step 02

• Create The Module PROG175SQL

Step 03

• Create the Module CUSTSVRPGM
• Create the Service Progam CUSTSVRPGM

Step 04

• Create The Module CINSVRPGM
• Create The Service Program CINSVRPGM

Step 05

• Create The Module ORDSSVRPGM
• Create The Service Program ORDSSVRPGM

Step 06

• Create the Executable PROG175SQL

©2024 imPower Technologies

Create PROG175D Display File

Create the Display file

Right-click the program source member

1.Expand the Library>source file until
you find the source member

2.Select the CRTDSPF

Always check that the compile worked

Activation Group information

Application ILE Information

• PROG175SQL – Will run in its own named ORDERENTRY
activation group

• All Service programs will use *CALLER for the ACTGRP
parameter

• Binder Directory name is ORDERSBIND

©2024 imPower Technologies

Create GETSQLDIAG Module

Right-click the program source member

1.Select the Compile (Prompt) > CRTSQLRPGI

2.Change Compile type to *Module

3.Click-on Ok

Always check that the compile worked under commands log view

Create GETSQLDIAG Module

©2024 imPower Technologies

Create GETSQLDIAG Service Program

Create GETSQLDIAG Service Program

Right-click the program module THEN Select Create -> Service program

1.Change export to *ALL

2.Add the YourLib/GETSQLDIAG Service program

3.Use the *CALLER to the ACTGRP parameter

Click “Ok”

2

©2024 imPower Technologies

Create PROG175SQL Module

Create PROG175SQL Module

Right-click the program source member

1.Select the Compile (Prompt) >CRTSQLRPGI

2.Change Compile type to *Module

3.Click-on Ok

Always check that the compile worked under commands log view

©2024 imPower Technologies

Create CUSTSRVPGM Module

Create CUSTSRVPGM Module

Right-click the program source member

1.Select the Compile (Prompt) >CRTSQLRPGI

2.Change Compile type to *Module

3.Click-on Ok

Always check that the compile worked under commands log view

©2024 imPower Technologies

Create CUSTSRVPGM Service Program

Create CUSTSRVPGM Service Program

Right-click the program module THEN Select Create -> Service program

1.Change export to *ALL

2.Add the YourLib/GETSQLDIAG Service program

3.Use the *CALLER to the ACTGRP parameter

Click “Ok”

©2024 imPower Technologies

Create CINVSRVPGM Module

Right-click the program source member

1.Select the Compile (Prompt) > CRTSQLRPGI

2.Change Compile type to *MODULE

3.Click-on Ok

Always check that the compile worked under commands log view

Create CINVSRVPGM Module

©2024 imPower Technologies

Create CINVSRVPGM Service Program

Create CINVSRVPGM Service Program

Right-click the program module THEN Select Create -> Service program

1.Change export to *ALL

2.Add the YourLib/GETSQLDIAG Service program

3.Use the *CALLER IN the ACTGRP parameter

Click “Ok”

©2024 imPower Technologies

Create ORDSSRVPGM Module

Create ORDSSRVPGM Module

Right-click the program source member

1.Select the Compile (Prompt) > CRTSQLRPGI

2.Change Compile type to *Module

3.Click-on Ok

Always check that the compile worked under commands log view

©2024 imPower Technologies

Create ORDSSRVPGM Service Program

Create ORDSSRVPGM Service Program

Right-click the program module THEN Select Create -> Service program

1.Change export to *ALL

2.Add the YourLib/GETSQLDIAG Service program

3.Use the *CALLER to the ACTGRP parameter

Click “Ok”

Create A RUNNABLE Application

Use a Binding Directory

1.Expedites using Service Programs
2.Contains service programs with the required

procedures for the Order Entry Application

©2024 imPower Technologies

Create A RUNNABLE Application

Create PROG175SQL Program

1.Right-click the program module THEN Select Create -> Program

2.Change ACTGRP to ORDERENTRY

3.Click “Ok”

Complete online Classes
Based on my textbooks

Includes numerous Videos,
Quizzes, Sample programs & and program

assignments

©2024 imPower Technologies

Jim Buck

Phone 262-705-2832

jbuck@impowertechnologies.com

Twitter - @jbuck_imPower

www.impowertechnologies.com

	Slide 1: Coding RPG for the 21ST Century
	Slide 2: How can imPower Technologies help your company?
	Slide 3: Session Objectives
	Slide 4: Relationship of OPM, EPM & ILE to IBM i OS
	Slide 5: Original Program Model (OPM)
	Slide 6: Enhanced Program Model (EPM)
	Slide 7: Integrated Language Environment
	Slide 8: Converting RPG III to RPG IV (ILE RPG)
	Slide 9: Converting RPG III to RPG IV (ILE RPG)
	Slide 10: Additional Utilities and Tools
	Slide 11: Additional Steps in the Modernization Process
	Slide 12: ILE vs OPM
	Slide 13: ILE vs OPM – 80’s Thinking
	Slide 14: ILE vs OPM – A New way of thinking
	Slide 15: What NOT to consider!
	Slide 16: Traditional Monolith Program
	Slide 17: The Next Generation of RPG programs
	Slide 18: MVC Architecture!
	Slide 19: MVC Architecture!
	Slide 20: A Modern IBM i Application Overview
	Slide 21: The View
	Slide 22: The Controller Program
	Slide 23: The Model Programs
	Slide 24: The Model Programs
	Slide 25: The Model Programs
	Slide 26: The GETSQLDIAG program
	Slide 27: Activation Groups
	Slide 28: Activation Groups
	Slide 29: Activation Groups
	Slide 30: Activation Groups
	Slide 31: Activation Groups
	Slide 32: Activation Groups
	Slide 33: Activation Groups
	Slide 34: Error Handling
	Slide 35: Introduction to Binding Directories
	Slide 36: Binding Directories
	Slide 37: Binding Directories
	Slide 38: Binding Directories
	Slide 39: Using Binding Directory
	Slide 40: Intro to Binder source
	Slide 41: Retrieve Binder source
	Slide 42: Original Service Program
	Slide 43: Changed Service Program
	Slide 44: Updated Service Program
	Slide 45: Updated Service Program
	Slide 46: Create the Application
	Slide 47: Create PROG175D Display File
	Slide 48: Activation Group information
	Slide 49: Create GETSQLDIAG Module
	Slide 50: Create GETSQLDIAG Service Program
	Slide 51: Create PROG175SQL Module
	Slide 52: Create CUSTSRVPGM Module
	Slide 53: Create CUSTSRVPGM Service Program
	Slide 54: Create CINVSRVPGM Module
	Slide 55: Create CINVSRVPGM Service Program
	Slide 56: Create ORDSSRVPGM Module
	Slide 57: Create ORDSSRVPGM Service Program
	Slide 58: Create A RUNNABLE Application
	Slide 59: Create A RUNNABLE Application
	Slide 60
	Slide 61

